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Abstract-Onset of Marangoni convection in a horizontal layer of fluid possessing a deformable free 
surface and subjected to a nonplanar oscillation of shear due to motion of the lower plate is studied. 
Results show that the onset of the Pearson mode occurring at finite wavelengths is delayed by the nonplanar 
shear, but also that the long-wavelength mode, originally studied by Striven and Sternling, is destabilized. 
The modulational effect peaks at a finite frequency and tends to zero in both small and large frequency 

limits. Physical mechanisms for both stabilization and destabilization are discussed. 

‘I. INTRODUCTION 

Thermocapillary instabilities in a layer of liquid giving 
rise to Marangoni convection are well-known. While 
Benard was the fnst to observe such a phenomenon 
in a laboratory experiment, which he orginally 
thought of as being buoyancy-driven, Pearson [l] was 
the first to offer a systematic theory based on surface- 
tension effects. For a liquid possessing a negative sur- 
face-tension derivative with respect to temperature, 
Pearson showed that heating the layer from below can 
yield steady convection if the Marangoni number is 
above a critical value. Since the effect of gravity cannot 
in general be ignored, Nield [2] extended the com- 
putations by including the buoyancy-driven Ray- 
leigh-BCnard mode. A second important theoretical 
contribution came from Striven and Sternling [3], who 
showed that, by allowing the layer’s surface to deform, 
an instability in the form of long-wavelength dis- 
turbances can occur. This mode was later shown by 
Smith [4] to be stabilizable by gravity. Goussis and 
Kelly [5] investigated the physical mechanisms for 
the two convection modes and showed that in some 
parameter regimles the modes become distinct and 
well-separated by a stable region. 

The effect upon instability of oscillatory motions 
induced on the layer has not yet been examined. Inter- 
est in the effect is actually two-fold : (i) because ther- 
mocapillary instabilities can crucially affect materials 
processing, such as crystal-growth in a space environ- 
ment [6], the behavior of the instabilities when subject 
to small-amplitude vibrations is definitely relevant 
and should be understood; (ii) because convective 
motions are sometimes undesirable, it is of interest to 
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have a simple means of controlling their onset. Kelly 
proposed a method of stabilizing a gravitationally 
unstable layer by a nonplanar oscillatory shear [7]. 
Kelly and Hu [8] showed that the method tends to 
stabilize Rayleigh-BCnard convection based on a 
small Reynolds-number analysis, and in a later paper 
[9], they demonstrated that significant stabilization 
can be realized in principle at larger values of Reyn- 
olds number. The major purpose of our study is to 
examine this technique when applied to Marangoni 
convection. Our approach consists of using a small 
Reynolds number expansion and then solving the lin- 
ear stability problem by a Runge-Kutta shooting 
technique. The buoyancy effect will also be included, 
although it must be considered to be relatively weak 
for the deformable case in order to use the Boussinesq 
model [lo]. 

2. MATHEMATICAL FORMULATION 

Consider a horizontal layer with mean depth h of 
viscous and incompressible fluid heated from below. 
The Oberbeck-Boussinesq equations describing the 
system are 

V:+V*.VV* = _&* 
PO 

+g(l--a(T*-T8))k+vV2V* (la) 

T*+V**VT* = KV~T* t (lb) 

v*v*=o. UC) 

Let x* and y* denote spatial coordinates in the 
horizontal plane and z* be the distance normal to the 
layer, with its positive direction pointing in the same 
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NOMENCLATURE 

D derivative with respect to z A modulation parameter 

g gravitational acceleration 1 amplitude ratio of Reynolds numbers 
h layer depth (% I%) 
k wavenumber V kinematic viscosity 
K thermal conductivity PO reference density of fluid 

1, j, k coordinate unit vectors 
: 

surface tension 
N amplitude of surface deformation complex mean flow function 

P pressure &, & cosine and sine mean flow functions 
P pressure associated with basic state V gradient operator 

4 heat transfer coefficient at free surface V: horizontal Laplacian operator 
t time w frequency. 
T temperature 
U (z, t), V (z, t) x, y components of basic Nondimensional parameters 

flow velocity Pr Prandtl number, V/IC 
V vector fluid velocity Bo Bond number, pgh’/g 
M’ vertical perturbation velocity Bi Biot number, qh/K 
W amplitude of w C Crispation number, pvrc/oh 
X, y, z Cartesian coordinates. M Marangoni number, yAT*h/pw 

Ra Rayleigh number, agAT*h3/vti 
Greek symbols Re Reynolds number, Ugh/v 

; 

coefficient of thermal expansion 1 nondimensional layer thickness, 
square-root of the nondimensional (Bo/2Pr C)“‘. 
oscillation frequency 

Y magnitude of surface tension Superscripts and subscripts 
derivative * dimensional quantities 

6 phase angle between transverse + adjoint or complex conjugate of 
components of shear transpose 

: 
surface elevation 0 reference quantity 
amplitude of perturbation x, y, z derivative with respect to x, y, z 
temperature respectively ; also components in x, y, z 

I9 perturbation temperature, also angle directions 
of the wave vector (.)’ derivative with respect to z 

X thermal diffusivity (.), critical condition. 

direction as gravity and measured from the mean free 
surface level (z* = 0). 

The basic state consists of a periodic flow parallel 
to the plane which has a frequency w* and depends 
on Z* and t* only. It is generated by a wall oscillation 
in the x* and y* plane at Z* = h. In component form. 
the basic flow is 

V*(z*, t*) = iU*(z*, t*)+jV*(z*, t*) (2) 

governed by the equation 

2p;v* +* 

where z = z*/h, t = w*t*, and /? = w*h*/(2v). The 
mean flow is then determined by applying a no-slip 
condition at the wall and a stress-free condition at the 
free surface so that 

u*(l, t) = u;cost i u*(o, t) = 0 (da) 

V*(l,t) = I’,*cos(t+6) ; l’*(O,t) = 0 (4b) 

where 6 is a phase shift allowed between the two 
components of wall velocity. An exact solution of the 
mean flow is available, given by 

U*(z, t) = Ug{&(z)cos t+&(z) sint} @a) 

v*(z,t) = V,*(~,(z)cos(t+6)+~,(~)sin(t+6)} 

(5b) 

where & and & are respectively determined as 

cosh( 1 + i)jIz _ cosh( I- i)pz 
cosh(1 -i)p . (SC) 

The scale of the Stokes layer relative to h is deter- 
mined by fl-‘. The Oberbeck-Boussinesq system 
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involves the assumption of small viscous dissipation ; 
thus the temperature T* remains conductive in the 
absence of convection. The temperature profile even 
in the presence 01‘ a parallel flow is then given by 

T*(z*) =: T*(h)+AT*T T = z- 1 

P* = pghP P = z (6) 

where AT* = T*(h) - Tt. Next, we obtain the stab- 
ility equations by perturbing the flow fields about the 
basic state. Nondimensional variables will be intro- 
duced here. We let 

V*(z,t) =i{Ugl.(z,t)+($u} 

+~j{V:v(z,t)+($o}+lt(~)w (7) 

T*(z) = T*(l)+-AT*(T+@ P* = pghP+p f ‘p 
0 

(8) 

where u, u, w and 0 are perturbation variables. After 
substituting the above expressions into equation (1) 
and linearizing about the basic state, we can obtain 
the following equations for w and 8 : 

2aI; +,e.JJ;; +Re,d -V2 
ay 

v2w- 

( 
Re,U”& + R,V”$ 

> 
w = -PC’RaVl0 (9) 

Pr 2j2i+Re,Uk+Re.,,VA 
ay 

(10) 
where the Reynolds number (Re), Prandtl number 
(Pr) and Rayleigh number (Ra) are defined in the 
Nomenclature. We consider the lower wall as rigid 
and isothermal, ~13 that the boundary conditions there 
are 

w= w-=0=0 atz=l. (11) 

The boundary conditions at the free surface are 
determined by five equations, which comprise the nor- 
mal stress and the two shear stress conditions, the 
heat flux condition and the kinematic condition. For 
thermocapillary processes, we consider the surface 
tension force as varying linearly with temperature at 
the surface, that is 

17 = a,-yl(T*(q)-TT,*) y = - (12) 
II 

where y is typica:ily positive. Upon linearizing about 
the basic state at z = 0, these boundary conditions 
are, respectively, 

Rex U’rlx + Re,, V’rly - g + w, 

-;p+&v:~=o (13) 

Re,U”~+uz+~, = Pr-‘M(T’qx+B,) (14) 

Re,V”q+vz+w,. = Pr-‘M(T’q,.+0,) (15) 

Bi(~‘tf+o) = ez (16) 

28’ qt + Re, Uq, + Re,. Vq = w. (17) 

where C, Bo, M, and Bi are, respectively, the Cris- 
pation, Bond, Marangoni and Biot numbers and are 
defined in the Nomenclature. Both the Crispation 
number and the Bond number measure the rigidity of 
the surface due to surface tension, the former with 
respect to diffusive effects and the latter relative to 
gravity. The Biot number measures the heat-transfer 
property of the surface. For Bi = 0, the surface is 
insulating, strictly speaking, but in applying this con- 
dition to the stability problem we are thinking of the 
case of a fixed heat flux. As Bi * 00, the surface tends 
to a perfect conductor. 

Since the conservation equations consist of w and 0 
only, u, v and p are eliminated in the stress conditions 
in favor of w, 0 and n ; q is related to MJ through 
the kinematic condition. In doing the elimination, we 
combine the x and y components of the momentum 
equations to give 

(28’ w2, + Re,y Uwz, + Re,. VW,) - V2 wI = V:p. 

(18) 

This expression, together with the continuity equa- 
tion, is used to recast the normal stress and the tan- 
gential stress conditions as, respectively, 

Re,(Uw,,-2U’V:q,)+Re,(Vw,.-2V’V:q) 

+ 2p2 w,, - (WZLI + 3v: w,) 

+ &C(Bo-V:)V:n = 0 (19) 

and 

Rex U”q, + Re, V”q + Vi w - w:, 

= Pr-‘MV:(T’q+B). (20) 

Now let 

(w,0,~) = (W(z, t),O(z, t), N(t))eYk,‘+k,~)+~.~. 

(21) 

where C.C. denotes complex conjugate. After sub- 
stituting equation (21), the governing equations 
become 

2p2$ +ik,Re,Utik,Re,V- 

W-(ik,Re,U”+ik,.ReyV”)W 

= Pr-‘Rak’O (22) 



2272 A. C. OR and R. E. KELLY 

Pr 28’: 

O= -PrW (23) 

to be solved subject to the wall boundary conditions 
(atz= 1) 

w=;w=o=o 
z (24) 

the free surface stress conditions (at z = 0) 

V2&-~+3k2$ W-&,(BOfk’)N L > 

= -ik,Re, UE W+2k’U’N 
( > 

-ik,Re, 
c 

V f W+2k2 V’N 
z > 

(25) 

$ W+k’W-Pr-‘Mk’(N+O) 

= (ik,Re,U”+ik,.Re,V”)N (26) 

and the free surface temperature and kinematic con- 
ditions 

+;(N+O) = 0 (27) 

2/?‘iN- W= -(ik,Re,U+ik,Re,.V)N (28) 

where k2 = k: + k-z. 

3. THE SMALL-AMPLITUDE EXPANSION 

In the following, we present an expansion procedure 
for the solution of the above system in terms of the 
Reynolds number, which is assumed to be small. The 
procedure is very similar to that used by Kelly and 
Hu [8] for the case of Rayleigh-Btnard convection. 
and so only a summary of the procedure is presented. 
We let Re, = Re, Re,. = 1Re, and expand in terms of 
Re as follows : 

W(z,t) = W,(z)+Re W,(z,t)+Re2W2(z,t)+ . . . 

(294 

O(z, t) = @,(z)+ ReO, (z, t)+ Re2e2(z, t) + . . 

(29b) 

N(t) = N,,+ReN,(t)+Re’N,(t)+ . . . (29~) 

where we have assumed that as M + MC, a monotonic 
onset occurs as Re -+ 0 [l-5]. The critical values of the 
parameters, Ra, and MC, will also be expanded in Re ; 
thus we have 

M, =Mo+ReM,+Re2M2+ . (294 

Ra, = Rao+ReRa,+Re2Raz+ . . . (294 

The unmodulated neutral curves corresponding to 
both controls are given in Nield [2]. The modulated 
neutral curves corresponding to M = 0 and a nonslip, 
nondeformable upper surface are given by Kelly and 
Hu [8]. For modes corresponding to monotonic 
growth, the following governing equations hold at 
Re=O: 

(D’-k2)’ W,, = - Pr-‘k’Ra,O, 

(D2 -k’)O, = Pr W,, 

where at z = 1 

(304 

(3Ob) 

W, = D W, = 0, = 0 (314 

and at z = 0 

-D3Wo+3k’DW,,-&,(Bo+k’)No =0 

(31b) 

D2 W,,+k’ W,-Pr-‘M,k2(N,+0,) = 0 

(31c) 

DE+Bi(No+O,) = 0 (314 

w, =o. (314 

From condition (3 1 b), we observe that No + 0 as Pr 
C + 0 if (Bo + k2) remains finite. If both (Bo + k2) -+ 0 
and Pr C -+ 0, then N, can remain finite. Thus, in 
general the nondeformable stress free surface con- 
dition is realized as Pr C + 0, in which we recover the 
boundary condition used in [l-2]. For Ra = 0, simple 
closed form expressions exist for the dependent vari- 
ables and the neutral curve [l 11. Here, the zeroth- 
order and the higher order solutions will be obtained 
by a fourth-order Runge-Kutta shooting method. A 
critical stability curve is thereby generated in the Rae- 
M, plane when all other parameters are held fixed, 
along which the wavenumber is given by kc. 

For neutrally stable solutions, we can show that 
both Ra, = 0 and M, = 0 by symmetry consider- 
ations, and as a result the 0 (Re) solution is periodic 
in time with the frequency of the imposed motion. The 
nonhomogeneous boundary value problem arising at 
0 (Re) was solved numerically. We now proceed to 
the next order, 0 (Re’), at which order a solvability 
condition for Mz can be derived from the time-aver- 
aged equations. Letting W, and O2 be the mean parts 
of the second-order flow and thermal field, we have 
the following governing equations 

(D2-k2)2W2+Pr-‘k2Rao02 = -Pr-‘k’Ra,@, 

+i[(k,U+Ik,V)(D’-k’)W,-(k,U”+Ik,.I/”)W,] 

(324 
- 

(0’ -k2)a2 - Pr W2 = iPr[(k,U+Ik,.V)@,]. 

(32b) 
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The wall conditions at z = 1 for the second-order 
time-mean quantities are 

IV2 = DW, = 0, = 0. (334 

The free surface conditions at z = 0 are 

= - t;k, 
( 

U f W, + 2k2 U’N, 
> 

-ilk, 
( 

Vi WI + 2k2 VN, 
> 

(33b) 

= (ik,U”+i~k,,V”)N, (33~) 

D@, -Bi(x+&) = 0 (334 

W, = -(ik,U+ilk,V)N,. (334 

As in the analysis of Kelly and Hu [S], it can be 
shown from the governing equations that M2 and Raz 
are proportional to a factor A, defined as 

A(B, I, 6) = (cos 0+icos6 sin0)2 +A2 sin’ 0sin26, 

k, =I k cos 0, k,, = k sin 0. (34) 

For the case of stabilization (M2 > 0 Ra, > 0), the 
preferred value is obtained by minimizing A over 0 
for a given 1 and 6. Without loss of generality, it is 
sufficient to comider the ratios of M,lA and Ra2/A. 
The minimal values for A when stabilization occurs 
are discussed in ref. [8]. For simplicity, here we set 
A = 1, and the numerical results should be viewed 
with this simplification in mind. In general, when both 
buoyancy and Marangoni effects are present, Ra, and 
M, are not individually determined but are related by 
the solvability condition. Since the onset is monotonic, 
this condition is real. In the following, we summarize 
a shooting scheme which is used here to determine the 
solvability condition. In short, the system of equations 
(32a,b)-(33a,b) ‘IS expressed in the following vector 
form, 

k = Ax+f, +Ra,f, (35) 

subject to 

Qx=O at ~==l and Px=h,+M,h, 

at z=O. 

where x is the state vector ; f, and h,, j = 1, 2, are 
known vector functions. The solvability condition 
takes the form 01‘ 

M,-bRa, = c 

where b and c are defined as follows : 

(36) 

b = (li+PXp2) c = ~+PX,, -h,) 

@+h2) (S+h,) 

The vector H satisfies (X,‘P +)H = 0 ; X0 is a matrix the 
column vectors of which form half of the fundamental 

set of the homogeneous system satisfying the wall 
condition Qx = 0 at z = 1 ; finally xpj,j = 1,2, satisfy, 
respectively, 

%=Ax+f,, j= 1,2 

with xp, = 0 at z = 1. In the solvability condition (36), 
b and c can be evaluated numerically through a scheme 
described in ref. [ 121. 

4. RESULTS 

The basic flow in equation (2) depends on the func- 
tions &(z) and &(z), which in turn depend upon fi. 
The limit fi + 0 corresponds to a uniform basic flow 
(i.e. no shear), which has no effect on convection. In 

(4 
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a, 
d cl*6 ‘-* 

__ ..-._..i__ .--- --- 
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10 15 
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Fig. I. Modulation curves with negligible surface defor- 
mation showing M,/M,Pr vs j?: (a) Bi = 0.5, Pr = 10 
(higher) and Pr = 1 (lower); (b) Pr = 1, Bi = 0.5 (upper), 
10 (middle), and 100 (lower). Steady solutionscorresponding 
to the three curves have k, = 2.14, 2.74, and 2.98 and 

M,, = 98.3, 413.4 and 3303.8. respectively. 
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the other limit, as B + 00, both & and $s tend to zero 
as the Stokes layer becomes vanishingly thin, and so 
high-frequency oscillations have little effect on con- 
vection. Hence, the greatest change in stability due to 
the oscillation occurs at an intermediate value of b, 
which typically lies between 1 .O and 2.0. 

(i) Small surface deformations at Ra = 0 
Previous studies [l-5] showed that surface defor- 

mations only contribute a higher-order effect to the 
Pearson mode. To extract the Pearson mode for the 
present case of deformable boundary conditions, we 
used a sufficiently small value of the Crispation num- 
ber (e.g. C < 10e5), so that the surface displacement 
becomes very small. The problem is then independent 
of Bo. In fact, our results obtained in this way compare 
extremely well with those corresponding to the non- 
deformable surface conditions of [ 1,2]. The small-Re 
analysis consists of determining the 0 (Re’) change in 
M, from M,, namely Mz, by evaluating the solvability 
condition. In Fig. 1, we show M,, scaled by M,Pr, 
as a function of frequency. Figure l(a) shows the 
variations with Pr at a fixed value of Bi when 
MO = 98.26 and k, = 2.14 independently of Pr. The 
curves suggest that the stabilizing effect due to the 
oscillations becomes stronger as Pr increases. Next we 

(a) 
2mo ,%I 

I\ 
‘* 

2000 - ‘\\\ 

1500~\ ,-y*, . - 

lOOI- y;*,._ . _ 
:‘----__________- 

-__- 

500-- _______.__---- 
_____--- 

_______________.-.------- 

0 
0 1 2 3 

k 

investigate the variations with Bi. For large Bi, the 
surface temperature approaches the ambient tem- 
perature T, and so the thermocapillary effect does 
not exist. In Fig. l(b), the modulation curves cor- 
responding to three values of Bi are plotted. Con- 
vection occurs at higher values of M, as Bi increases. 
On the other hand, the modulation curves in Fig. 1 (b) 
suggest that a stronger stabilizing effect is associated 
with a lower Bi on the basis of percentage increase of 
M, for a given value of Re. 

(ii) Significant surface deformation for Ra = 0 
Studies [3-51 show for the zero-shear case that, 

when the free-surface is allowed to deform, convective 
instabilities can occur in the long-wavelength limit in 
addition to the Pearson mode. In ref. [5], a region of 
stability has been found separating the two unstable 
modes when Pr C is sufficiently small. In presenting 
the results, there are many different ways to par- 
ameterize the family of neutral curves. For example, 
in ref. [5], the parameterization was done by resealing 
the parameters so that the layer thickness h appears 
only in one of them. One advantage of this approach 
is that the stability gap between the two modes can be 
identified readily as a function of the layer thickness. 
Here, we present the results in such a manner that each 

k 

k 

Fig. 2. Steady-state neutral curves at Pr = 7.0. Curves in each panel are parameterized in I: 1.0 (short- 
dashed line), 1.5 (solid line), 2.0 (long-dashed line) and 2.3 for (a, b) but 3.0 for (c) (dashed-dotted line). 
The values of Bi I-’ and 2Pr C I for the curves on different panels are: (a) 10,0.5; (b) 0.5,O.l ; and (c) 10, 

0.01. 
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t 

v 1 
-2fi0+?--TT-h 6 

P 
Fig. 3. Characteristic curves for the long-wavelength mode 
showing M, vs for various k: from bottom 0.1 (solid line), 
0.5 (short-dashed line), 0.6 (long-dashed line), 0.75 (short- 
dashed line) and 3.0 (solid line). Other parameters are 

Pr = 7.0, Bi = 15, Bo = 0.0225 and C = 4.76 x 10m4. 

diagram corresponds to a fluid of the same material 
properties. The hmily of neutral curves in each diag- 
ram then corresponds to different layer thicknesses. 
The quantity used to parameterize the curves is 
defined as I = (Bo/2Pr C)‘13, which is proportional to 
h but not 0 (note that Z3 = x, the Galileo number, in 
ref. [5]). Figure 2 consists of three diagrams. Each 
diagram contains four neutral curves with different 
1. Since Bi is pr’oportional to h but C is inversely 
proportional to II, the values of Bi I-’ and 2Pr C I, 
rather than Bi and C, are given for each diagram. 
Results in panels (a) and (c) correspond to a better- 
conducting free surface than in panel (b). Panels (a) 
and (b) correspond to a larger Crispation number, 
thus a weaker surface tension than in panel (c). The 
results of Fig. 2 suggest that the long-wavelength 
mode is more preferred for a thin layer, unless surface 
tension is very strong. For a free surface that is a good 
conductor as well as possessing strong surface tension, 
the two modes are well-separated by a stable region. 
At some layer thckness, the two modes can have the 
same critical Marangoni number, implying that both 
modes can coexist at the onset. In some other situ- 
ations, the stable barrier disappears in such a way that 
M,(k) almost has, the same value for the whole k band. 

Having summarized the steady solutions for 
Re = 0, we now consider effects associated with the 
oscillation. We assume that the modulated onset 
occurs at the !same critical wavenumber as the 
unmodulated steady onset and consider how the oscil- 
lation affects the stability of the two distinct modes. 
The response for five different wavenumbers is shown 
by the curves in Fig. 3. A typical value of M2 for the 
Pearson mode with k = 3.0 is shown by the upper 
solid curve of Fig. 3. Similarity with the curves in 
Fig. 1 is evident. Thus, even for significant surface 

deformations, the qualitative features of the Pearson 
mode remain unchanged. The effect of the oscillating 
shear gets stronger ask + 0, with the lower solid curve 
in Fig. 3 for k = 0.1 showing destabilization (M2 < 0) 
over the range of b for which M2 is significant. (The 
values associated with k = 0 can be determined by the 
interpolation method.) The two solid curves represent 
the two end-values of wavenumbers. Destabilization 
occurs for the long-wavelengths and stabilization 
occurs for the short-wavelengths. but the destabilizing 
effect appears more pronounced. In the intermediate 
wavenumber regime (e.g. at k = 0.6), the curve has 
both a crest and a trough, and so the trend depends 
on /?. Discussion of the mechanism of the shear which 
causes stabilization for one mode but destabilization 
for the other will be postponed to a later section. For 
the moment, our focus will be on the destabilization 
of the long-wavelength mode, and its characteristic 
curves for representative parameters. Figure 4(a) 
shows, for Bi = 0.5-100, the curves of MJM, almost 
collapse onto one curve at a small wavenumber. This 
property suggests that MS is roughly proportional 
to M, but that otherwise M, is not sensitive to Bi. 
Comparison of Fig. 4(a) with Fig. l(b) suggests a 
stronger explicit dependence of the Pearson mode on 
Bi. Next, we consider the variation of M, with Pr. 
Figure 4(b) shows three curves varying over two dec- 
ades of Pr, from 0.07 to 7.0. Again, the curves almost 
merge into one single curve when M,/Pr is plotted. 

(iii) The general case for Ra # 0 
When both buoyancy and thermocapillary forces 

are present, Nield [2] found that at Re = 0 the two 
effects reinforce rather than oppose one another. 
Here, we consider a layer with a deformable free 
surface. But before we present the results, several 
aspects of the general problem are noted. 

First, in order that the Boussinesq approximation 
be valid, we require uAT* to be small. Thus, for a 
layer thickness that corresponds to the long- 
wavelength mode regime, Ru is typically of 0 (10’) or 
less for neutral stability, and so its effect should be 
modest in the Boussinesq regime. In some numerical 
results for the case of a deformable surface, M,(k) 
was found to become negative as k + 0 when Ra, is 
sufficiently large, indicating that an instability appears 
to occur in the long-wavelength limit for pure Ray- 
leigh-Benard convection. It has been noted elsewhere 
that this instability cannot exist for values of crAT* in 
the Boussinesq regime. In fact, the surface defor- 
mation has to be zero for Rayleigh-Benard convection 
in the Boussinesq limit (see ref. [lo] for example, pp. 
40-42). 

Second, as pointed out in ref. [13], both M and 
Ra are proportional to the external heating, which 
appears to be often the only parameter that can be 
conveniently varied in an experiment. In fact, both 
control parameters are related by 

M=rRa F=y 
po”#. 

(37) 
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(4 P 

(b) P 
Fig. 4. (a) MJM, vs /l at k = 0.5 for different Bi: 0.5 (long- 
dashed line), 10 (short-dashed line) and 100 (solid line). 
Other parameters are Pr = 7.0. Bo = 0.5 and C = 0.036. (b) 
MJPr vs /I at k = 1 .O for various Pr : 0.07 (solid), 0.7 (short- 
dashed line) and 7.0 (long-dashed line). Other parameters 

are Bi = 10, Bo = 0.5 and C = 0.036. 

Therefore, equation (37) typically imposes an 
additional constraint on the general solvability con- 
dition (36) for a given experiment, where F is held 
constant. Solving equation (37) and (36) sim- 
ultaneously gives 

cr C 
M2 =p 

l--b R? =T_b. (38) 

So far, in all the results b is negative and so the denomi- 
nator does not vanish. Alternatively, the F in these 
expressions can be substituted for by the ratio M,/Ra,. 
The two limits of pure thermocapillary convection 
and Rayleigh-Benard convection now correspond 
respectively to the limiting cases of IF] >> lb1 and 

II-1 << 14. 

Two cases are distinguished in the following results. 
(i) When M > 0 and Ra > 0, the typical configuration 
is one of bottom-heating with the surface tension hav- 
ing y > 0 [13]. In this case the thermocapillary and 
gravitational effects tend to reinforce each other. (ii) 
When Ru < 0, AT* < 0 and therefore the layer is 
heated from above. For M > 0, the liquid is required 
to have y < 0, which is more unusual than case (i). 
The two cases for M < 0 will not be considered here 
but they have been studied with Re = 0 in the litera- 
ture (for example, see refs. [ 131 and [ 141). In the follow- 
ing, we present some results for cases (i) and (ii) in 
which the influence of the gravitational effect on ther- 
mocapillary convection is emphasized. 

In Fig. 5, we take a neutral curve with Ra = 0 (solid 
line) and compare it with one that occurs at I = 10 
(short-dashed line) and one that occurs at F = - 10 
(long-dashed line). In Fig. 5(a), C = 0.0238 and in 
Fig. 5(b), C is 50 times smaller. In Fig. 5(a), we 
observe that the gravitational effect is small on the 
neutral curve in the Pearson mode regime, but changes 
the curve substantially in the long-wavelength regime. 
As anticipated, gravity is destabilizing for Ra > 0 but 
stabilizing for Ra < 0. As the upper surface becomes 
more rigid, the gravitational effect does not appear to 
exert a significant influence on the neutral curve in 
either modal regime [see Fig. 5(b)]. The perturbation 
effect of the nonplanar oscillatory shear on the steady 
solution of Fig. 5(a) is then examined. The result is 
shown in Fig. 6. The stabilizing effect for the larger 
wavenumbers is slight for Ra of this magnitude. But 
the destabilizing effect for the smaller wavenumbers 
depends quite sensitively on gravity. Contrary to the 
results of Fig. 5(a), now the case for I < 0 is more 
destabilized than the case for F > 0. 

(iv) Physical mechanisms 
The physical mechanisms associated with the two 

distinct modes of instability have been discussed by 
Goussis and Kelly [5]. Here, we are actually more 
interested in the mechanisms of instability when the 
unsteady shear flow also plays a role. As the small-Re 
results indicate, Marangoni convection can be sta- 
bilized or destabilized, depending on the preferred 
wavelength of the steady mode at onset. 

We seek to gain insight by examination of energy 
transfer to the disturbance. In ref. [8], it was dem- 
onstrated that a nonplanar shear eliminates the free- 
dom for roll-reorientation which renders the shear 
ineffective for unidirectional flow as far as changing 
Ra, is concerned. However, the stabilizing effect of 
shear for that case is basically the same as the effect 
of shear upon transverse disturbances in the 2D case. 
Therefore, it suffices for us to consider the disturbance 
energy on the basis of the simpler 2D case. The impor- 
tant sources for energy transfer are given in the surface 
tangential-stress conditions, equations (14), (15). In 
the 2D case, take (14), multiply the expression by u 
and average it over time and the horizontal coordinate 
((.) denotes such averaging) to obtain 
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Fig. 5. Neutral curves showing the effect of finite Ra: parameters in (a) and (b) correspond, respectively, 
to those of the solid lines in Fig. 2(a) and (c). Here, Ra = 0 (solid line), p = 10 (short-dashed line) and 

r = - 10 (long-dashed line). 

( - u(u, + w,)) = Re( (&cos t+ &sin t)uq) 

-W’M(u(T’I?,+0,)). (39) 

Actually, there exists another energy source term 
corresponding to rhe Reynolds stress, which is a bulk 
term and involves integration over the fluid depth. 
This Reynolds-stress term, like in the case of ref. [8], 
is at least O(lO-“) smaller than the others and is 
therefore neglected. The term on the left hand-side of 
equation (39), say Es, represents the work done by the 
surface shear stress on the fluid. This energy gen- 
erating term has been found to be balanced almost 
completely by the viscous dissipation, It is composed 
of the two terms on the right of equation (39). The 
first term on the right, say Eb, represents work done 
by the basic flow shear owing to surface deformation. 
This term is expected to have little effect on the Pear- 

lo,. 
5__, . 

k 

Fig. 6. Showing the .M2 of the neutral curves in Fig. 2(a) at 
p = 1.2. 

son mode but can influence the long-wavelength 
mode. The second term, say E,,,, represents the energy 
release owing to the thermocapillary effect. In an 
expanded form, to 0 (Re2), Es is given by 

Es = E,, + Es2Re2 + . . (40) 

and likewise for Em. In contrast, Eb is second-order in 
Re. Thus, these energy terms satisfied 

& = &,, E,, = &,+E,,,z. (41) 

The energy production terms are now illustrated by 
several sweep-plots vs wavenumber in Figs. 7-8. In 
Fig. 7, the upper-left panel shows a log-log plot of 
Es,. This rate of energy production increases as k 
decreases. The upper-right panel shows the numerical 
accuracy, in which the magnitude of difference 
between Es0 and E,,,, is shown. The corresponding 
energy production in 0 (Re’) is shown in the lower- 
left panel. It is found that Es2 increases even more 
rapidly than E,,. The shape of Es, marks a certain 
transition in characteristics near k z 0.5. Again, the 
lower-right panel shows the numerical accuracy, in 
which it is shown that the difference between Es2 and 
E,, + Em2 is negligibly small. To understand the relative 
importance between the various components of 
energy production near the transition and the reason 
for M, switching sign as k decreases, we compare the 
various energy production terms in Fig. 8. The circles 
mark the curve of Es2, which is equal to the sum of all 
other terms. The solid curve represents Eb, which is 
almost zero for larger k, but increases sharply for k 
decreasing from about 0.65. The Marangoni term, 
Ems, consists of two parts : Ef$ represents the second- 
order Marangoni shear-stress term, whereas E$ is 
equal to the product of M, and E,,/M,, namely, 

E,$ = M,Pr-‘(uo(T’~,+8,),). (42) 

In Fig. 8, the short-dashed curve represents Ei?), 
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Fig. 7. Log-log plots of energy source terms as functions of wavenumber: (a) ES,,; (b) magnitude of 
E,O-E,,,O ; (c) Es2 ; and (d) magnitude of ESZ-E,,,2 -&. The parameters are : Pr = 7, Bi = 15, 

C = 4.76 x 10-4, Bo = 0.0225. Panels (b) and (d) are intended for showing the numerical accuracy. 

sign of E$. Thus, for larger k, E$ falls short of 
overcoming the dissipation, and therefore the Mar- 
angoni number must be increased (corresponding to 
M, > 0) to produce a stronger shear for sufficient 
energy production. At lower k, even though E,$ main- 
tains the same pace as the dissipation, a new source 
of energy, namely, Eb arises. In the presence of this 
additional surface shear generated by the basic flow, 
the thermocapillary shear responsible for the insta- 
bility is weaker. Thus, M, is negative. 

5. CONCLUSIONS 

The major findings in our present results are that 
0 0.5 1 1.5 2 25 3 the Pearson mode, similar to the Rayleigh-BCnard 

k 
mode, is stabilized by a nonplanar shear oscillation 

Fig. 8. A comparison of the second-order energy source 
while the long-wavelength mode is destabilized. The 

terms as functions of wavenumber: ES, (circles); I& (solid stabilization is due to an increase in viscous dis- 

line) ; E,$ (short-dashed line) and IZg[ (long-dashed line). sipation associated with non-zero Reynolds number. 
The parameters are the same as in Fig. 7. The Reynolds stress effect is small. The destabilization 

of the long-wavelength mode, on the other hand, is 
due to the increase of perturbation shear stress at the 

whereas the long-dashed curve represents EEi. Since surface which in the presence of surface deformation 
E,,/M, is positive, the sign of M2 is determined by the provides an additional source of energy. A time-per- 
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iodic shear flow with a free surface can produce a long- 
wavelength mode of instability even for an isothermal 
situation [15]. In Yih’s case [15], instability occurs at 
a finite value of Re, but it appears that the present 
long-wavelength destabilization and that for Yih’s 
problem may involve the same mechanism. Since in 
the isothermal case no thermocapillary shear is avail- 
able, long-wavelength instability can only occur at 
finite Re, when the: energy release is sufficiently strong 
as to overcome dissipation. 

The small-Re results presented here give us a guide 9. 

for a finite-Re study, which is currently underway. 
Only by means of such a study can we determine 
whether the stabilization or destabilization can be sig- 10. 

nificant. 

Acknowledgement-This research was supported by the 11. 
NASA Microgravity Fluid Physics Program through grant 
NAG3-1456. 

.m 
IL. 

REFERENCES 
13. 

1. J. R. A. Pearson, On convection cells induced by surface 
tension, J. Fluid Mech. 4,489-500 (1958). 

2. D. A. Nield, Surface tension and buoyancy effects in 
cellular convection, J. Fluid Mech. 19, 341-352 (1964). 14. 

3. L. E. &riven and C. V. Sternling, On cellular convection 
driven surface tension gradients : effects of mean surface 
tension and surface viscosity, J. Fluid Mech. 19,321-340 
(1964). 15. 

4. K. A. Smith, On convective instability induced by sur- 
face tension, J. Fluid Mech. 24,401414 (1966). 

D. A. Goussis and R. E. Kelly, On the thermocapillary 
instabilities in a liquid layer heated from below, Int. J. 
Heat Mass Transfer 33 (lo), 2237-2245 (1990). 
S. Ostrach, Fluid mechanics in crystal growth-the 1982 
Freeman Scholar Lecture, J. Fluids Engng 105, 5-20 
(1983). 
R. E. Kelly, Stabilization of Rayleigh-Bbnard convection 
by means of a slow nonplanar oscillatory flow, Phys. 
Fluids A 4 (4), 647-648 (1992). 
R. E. Kelly and H. C. Hu, The onset of Rayleigh-Btnard 
convection in non-planar oscillatory flows, J. Fluid 
Mech. 249,373-39011993). _ 
R. E. Kellv and H. C. Hu. The effect of finite amnlitude 
nonplanar-flow oscillations upon the onset of Rayleigh- 
Btnard convection, Heat Transfer 1994, Proc. 10th Int. 
Heat Transfer Conf I, pp. 79-83 (1994). 
P. G. Drazin and W. H. Reid, Hydrodynamic stability. 
In Cambridge Monographs on Mechanics and Applied 
Mathematics. Cambridge University Press, Cambridge 
(1982). 
S. Screenivasan and S. P. Lin, Surface tension driven 
instability of a liquid film down a heated incline, Int. J. 
Heat Mass Transfer 21, 1517-1526 (1978). 
A. C. Or, A shooting scheme for boundary-value prob- 
lems, J. Compur. Phys. 114(2), 280-283 (1994). 
C. Perez-Garcia and G. Carneiro, Linear stability analy- 
sis of Benard-Marangoni convection in fluids with a 
deformable free surface, Phys. Fluids A 3 (2) 292-298 
(1991). 
M. Takashima, Surface tension driven instability in a 
horizontal liquid layer with a deformable free surface. 
11. Overstabilitv. J. Phvs. Sot. Jan 50 (8). 2751-2756 
(1981). .’ 
C. S. Yih, Instability of unsteady flows or configurations, 
Part 1. Instability of a horizontal liquid layer on an 
oscillating plane, J. Fluid Mech. 31, 737-751 (1968). 


